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Abstract. We revisit the question of how a definite phase between Bose-Einstein condensates can sponta-
neously appear under the effect of measurements. We first consider a system that is the juxtaposition of
two subsystems in Fock states with high populations, and assume that successive individual position mea-
surements are performed. Initially, the relative phase is totally undefined, and no interference effect takes
place in the first position measurement. But, while successive measurements are accumulated, the relative
phase becomes better and better defined, and a clear interference pattern emerges. It turns out that all
observed results can be interpreted in terms of a pre-existing, but totally unknown, relative phase, which
remains exactly constant during the experiment. We then generalize the results to more condensates. We
also consider other initial quantum states than pure Fock states, and distinguish between intrinsic phase of
a quantum state and phase induced by measurements. Finally, we examine the case of multiple condensates
of spin states. We discuss a curious quantum effect, where the measurement of the spin angular momentum
of a small number of particles can induce a big angular momentum in a much larger assembly of particles,
even at an arbitrary distance. This spin observable can be macroscopic, analogous to the pointer of a
measurement apparatus, which illustrates the non-locality of standard quantum mechanics with particular
clarity. The effect can be described as the teleportation at arbitrary distances of the continuous classical
result of a local experiment. The EPR argument, transposed to this case, takes a particularly convincing
form since it does not involve incompatible measurements and deals only with macroscopic variables.

PACS. 03.65.Ta Foundations of quantum mechanics; measurement theory — 03.65.Ud Entanglement and
quantum nonlocality (e.g. EPR paradox, Bell’s inequalities, GHZ states, etc.) — 03.75.Gg Entanglement

and decoherence in Bose-Einstein condensates

It is well-known in quantum mechanics that one cannot
construct a quantum state where the number of particles
and the phase are both arbitrarily well defined; they are
actually incompatible observables, related by a Heisenberg
type uncertainty relation, as position and momentum of
a single particle. For a general discussion of the phase
operator in quantum mechanics, see for instance refer-
ences [1-3]. An usual illustration of the relation between
phase and particle number is given by the so-called “coher-
ent states” or “Schrodinger semi-classical states”, where
fluctuations of the number of particles are used in order
to define a phase. These states are often discussed in the
context of electromagnetism [4], but they also apply to
Bose-Einstein condensates, on which we focus the inter-
est here — more precisely, multiple condensates and their
relative phase.

For instance we consider a physical system that is
the juxtaposition of two systems in Fock states (number
states), described by the state vector:

|P0) = |Na : pa ;5 Np: pp) (1)

# e-mail: laloe@lkb.ens.fr

where N, particles are condensed in the same single parti-
cle quantum state y,, and N particles in the same quan-
tum state ¢p. These two states may correspond to plane
waves with momenta k, and kj, a case in which one can
expect the occurrence of an interference pattern with spa-
tial frequency k, — k;. Nevertheless, the position of this
pattern depends of the relative phase of the waves, which
is completely unknown in a state such as (1). One could
then wonder whether an interference effect is observable
at all under these conditions.

The question was studied theoretically by several au-
thors [5-9]; see also references [10-13]. The result is that
an interference pattern is in fact observed, with a phase
that spontaneously emerges from the quantum measure-
ment process itself. The detection of the first particle oc-
curs at a completely random position, but this position
provides a first information on the value of the phase;
the second particle is then detected at a position that is
correlated with the first, and this measurements makes
the information on the phase more precise; as more and
more detection events are accumulated, the phase becomes
better and better defined. In practice, a relatively small
number of detections is sufficient to determine the relative
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phase with good accuracy. Nevertheless, before the first
measurement, according to standard quantum mechanics
there is no way whatsoever to predict the value that this
phase will spontaneously choose. In other words, repeating
the same experiment from the same initial conditions (1)
will lead to another, completely independent, value of the
relative phase. The spontaneous appearance of a relative
phase under the effect of measurement is related to the
notion of spontaneous symmetry breaking of the conser-
vation of the number of particles, and to non-zero average
values of the field operator in superfluid systems [14,15]. It
also relates to Anderson’s intriguing question, as quoted
by Leggett [16]: “Do superfluids which have never seen
each other possess a definite relative phase?” [17,18].

In this article, we revisit this question by using a
slightly different method from that of references [5-11,13];
we propose a straightforward analytical calculation that
does not require the introduction of any (incoherent) fluc-
tuation of the particle numbers, as in [7,8] for instance,
but deals directly with pure Fock states; it reproduces the
stochastic simulations of [5] with only one approximation
(total number of particles much larger than the number
of measurements). In Section 1 we discuss how the pro-
cess of measurement, applied to a pair of systems that
are initially in Fock states, therefore with no well defined
phase, can make such a phase appear spontaneously; in
Section 2 we apply our calculations to more general cases
and discuss how an intrinsic phase, contained in the initial
state, can combine with a spontaneous phase induced by
measurements; in Section 3, we discuss multiple conden-
sates in the context of spin states and show in particular
how the measurement of a small number of spins may in-
duce an angular momentum for a much larger assembly of
spins, a curious non-local quantum effect.

1 Spontaneous phase induced
by measurements on Fock states

We first recall a general result of quantum mechanics. We
consider a system in a quantum state [@), and a series of
observables:

A with eigenvalues a;; P(a;) is the projector onto the
corresponding eigenstate(s)
B with eigenvalues b;; P(b;) is the projector onto the
corresponding eigenstate(s)

)

C etc.

If we assume that all these observables commute with
each other, then the probability of observing in a com-
bined measurement the results a;, b;, cx, etc. can simply
be written:

(Po|P(ai) P(bj) Plck) - |Po) (3)
(the usual intrication of projectors in the so called Wigner
formula is not necessary here because the operators com-
mute). Whether or not the wave packet reduction postu-
late is applied does no matter; in other words, all mea-
surements can be made simultaneously, or one after the

other, and the order of measurements is irrelevant. What
is assumed, nevertheless, is that the sequence of measure-
ments covers a time that is negligible in comparison with
the time constants associated with the intrinsic evolution
of the physical system; this is why no evolution operator
has to be introduced in the formula. We now apply (3) to
position measurements inside the overlap regions of two
or more condensates.

1.1 A simple case: two highly populated states

We begin with a simple case, where the system is just a
juxtaposition of two Bose-Einstein condensates in plane
waves:

|Po) = |No : ko ; Np: kp). (4)
Here k, and k; are single particle states of well defined
momentum normalized in a box with periodic bound-
ary conditions; we assume that N, and N, are large
numbers. The probability for detecting a particle at
point r corresponds to the following operator, similar to
the projectors P(a;) introduced above:

N
lr) w(r) = Z i x)(i: x| (5)

Here ¥(r) is the usual field operator, and |i : r) is the
one particle state corresponding to a perfect localization
of particle ¢ at point r; N = N,+ Ny is the total number of
particles. To make the operator ¥'(r) ¥(r) really similar
to a projector with eigenvalues 0 and 1, one has to inte-
grate it over some small r domain A, centered around r;
assuming that A, is sufficiently small ensures that the
probability of finding two particles or more in A, is neg-
ligible. For the sake of simplicity we do not write these
integrations explicitly; in other words we write probabil-
ity densities instead of probabilities, but it would be easy
to come back to real probabilities by multiplying by an
appropriate power of A.. The field operator can be ex-
panded onto the annihilation operators ax of momentum
states according to:

U(r) ~ Z e®T gy (6)
Kk

where, as usual, the sum over k ranges over the values
allowed by periodic boundary conditions in a box.

We now calculate the probability for observing one
particle at position ry, another at position ro, still an-
other at position rsz, ... one at position rp. We consider
that all positions ry, ra, ... are different, so that all op-
erators ¥ and ¥' commute (more precisely, we assume
that the small integration domains A,,, A,,,, ... do not
overlap). This allows us to write this probability as:

(Bo|TT (x0T (12) W (13).. W (r3) W (ro) W (r1)|Po)  (7)
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or, if (6) is used:

SO W
ki, kll

Tt T
X (@0|ak,1 Uy ooy

akp ...akQak1|@0>. (8)
Acting on |®y) given by (4), the annihilation operators
a’s in the second line of this formula give zero unless the
values of the k and k' momenta are all equal to k, or k.
In addition, the series of k’s must contain the same num-
ber of k,’s (and kp’s) as the series of k'’s; otherwise, the
product of a and af operators creates a ket orthogonal to
|®o), and the second line vanishes. When this condition

is met, each ak, , or a;f( , introduces a factor y/Nqp £ n,
: al

where n is some integer ranging from 0 and P (the number
of measurements).

At this point we make our only approximation: we as-
sume that P is much smaller than N, and N, so that
we can replace all these factors by /N, . Now, in the
first line of (8), consider for instance the two first sum-
mations over ki and k;; if one of these vectors is cho-
sen as k,, the other as kp, one obtains a contribution

N, Nyetika—ku)r1. if hoth are equal to the same value,
k, or kj, one gets a contribution N, + N, = N. The same
result is obviously also valid for all other sums. Therefore,
if we introduce the notation:

Fy(r) =N, + N, =N
_ (9)
Fir (1) = VN, Nyt

where « is the contrast ratio z (0 < z < 1) defined by:

—kp)r _ =N e:l:i(kafkb)-r

2v/ NN
N=N,+Ny; =420 (10)
N
we can rewrite (8) as:
~ X Fu(n) Fulre) o F(rp). (1)

{¥ «=0}

In this expression, the sum contains all possible values 0,
+1 of ¢q1, qo, etc., with the only condition that their sum
be zero. Now, since the integral:

0 27
(where ¢ is a positive or negative integer) vanishes except
if ¢ = 0, we can release this condition by rewriting (11) as:

eta® (12)

/ i d@ H {FO I'z +e ¢F+1(I'z) eiZ@F,l(ri)} .
(13)

Finally, inserting (9) into this result provides the proba-
bility in the form:

/27r de H {1+z cosl(keg —kp) -r; +¥]}. (14)

This result is simple to interpret: the r; dependence of
any sequence of events is exactly the same as for a sys-
tem with a well defined, but completely unknown, initial
phase @. For each value of this phase, the r; dependence
of the probability factorizes and the detection events are
independent; it gives exactly the usual interference pat-
tern between two waves with wave vectors k, and k;. But
the summation of @ between 0 and 27 destroys the fac-
torization and correlates the events.

Let us assume for the sake of simplicity that the con-
trast ratio = is equal to 1. When the first detection lo-
calizes a particle at point R;, some information on &
is immediately obtained, if only because the value @ =
(ko — kp) - R1 + 7 becomes incompatible with the first
detection. After this measurement, the probability of a
second detection at point rs is proportional to:

/27r g—@ (14 cos[(kq —kp) -R1 +9])
0 2

X {1+ cos[(ky — kp) -T2 + D]} (15)
where the distribution of the values of @ is no longer
uniform: it is now given by the R, dependent sinusoidal
function between the first brackets inside the integral. If
two measurements are initially performed with localiza-
tions at points R; and Ras, the & distribution is then
given by the product of two sinusoidal functions, which
is more peaked than the previous distribution, etc. More
and more precise information on the value of @ is progres-
sively accumulated while more and more measurements
are performed. At some point, the phase is practically
determined and the detection events become quasi inde-
pendent. As pointed out by Mglmer [19], this is because
the two condensates tend to fuse into a single condensate
under the effect of successive interference measurements.
See also reference [20] for discussion of the evolution of the
system towards a coherent state, which requires a number
of detections comparable to the total number of atoms.
For more details about the evolution of the @ distribution
function, see for instance [7,8,11].

It is interesting to note that the phase @ plays a role
which appears, mathematically, very similar to that of the
so called “additional variables” (or “hidden variables”)
sometimes introduced to interpret the results of quantum
mechanics — see for instance [21,22] for a review. If stan-
dard quantum mechanics is completed with an additional
phase variable, one can consider that the measurement
process reveals a pre-existing value of @, instead of cre-
ating the relative phase between the two condensates as
in the standard interpretation of quantum mechanics. In
our calculation, the motivation for introducing ¢ was not
a fundamental re-interpretation of quantum mechanics; it
was just a convenient way to sum the many terms in (8)
while maintaining the sum rule over the series of values
of k and k. The precise role of the & integral is to en-
sure that the successive creation and annihilation opera-
tors bring back the system to the same initial Fock state,
in other words to enforce a number conservation rule. Each
term in the sum can be seen as arising from one possible
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path over intermediates states in which the values of the
occupation numbers vary in a given way before coming
bask to their initial values. It is interesting to remark that
the interference of all these paths should result in a sim-
ple phase integral, leading naturally to the introduction
of an additional variable @. We recover the usual relation
between conjugate variables, where a sum over one vari-
able with equal weights ensures a strict conservation of the
other; the phase appears here as related to fluctuations of
the number of particles in intermediate states (instead of
in the initial state as usual).

1.2 Three highly populated states

We now generalize the preceding discussion to three states
by assuming that the initial state of the system is given by:

|Po) = | N : ka; Np:ky; Ne:ke) (16)
and evaluate the probability of particle position measure-
ments at different points ry, ro, etc. by using (8) again.
The calculation remains very similar to that of the preced-
ing section. The only difference is that the k and k' can
now take three values, k,, k; and k., so that in the sec-
ond line of (8) it is no longer sufficient to ensure that N,
returns to the same value; the value of N, (or N.) must
also be controlled. This can be obtained by introducing
two relative phases, @ and @'. Another difference is that
the sums in the first line of (8) now include three terms
that contain the same k’s, as well as six others that con-
tain different k’s and introduce cosines. Therefore, if we
define:

3V NNy

N =N, + Ny+ Ng; z,, = ~

(17)

we obtain the quantity:

v

(ke —kp) - 1; + ]

2‘?‘3 {(kb k)1 @’}

—qs—qﬂ} (18)

2z,
+ a;acos[(kc—ka)-r

and the probability is proportional to:

27 @ 2m @
N/ d / @ {g—l—cos[(ka—kb)-ri—i—@]

+ cos [(kb —k.)-r;+ @/}
+ cos [(kc —ky) 1+ P — @l} } (19)

The situation is therefore a direct generalization of that
studied in the preceding section. Initially, the two phases @
and & are completely undetermined but, as more and
more position measurements are recorded, the relative

phases become better and better determined. We can gen-
eralize to K systems in highly populated Fock states, for
which position measurements progressively determine the
value of K — 1 phase differences. The phases have a prop-
erty of transitivity [23,24]: measuring the a — b phase dif-
ference and the b — c phase difference provides by sum the
knowledge of the a — ¢ phase difference.

Note however that, in all our calculations, we have ig-
nored the intrinsic evolution of the system; as mentioned
above, we have assumed that all measurements are made
in a time that is sufficiently short to justify this approx-
imation. Over longer periods of time, the inherent evolu-
tion of the condensates takes place and introduces phase
dynamics. Any term in the Hamiltonian containing oc-
cupation numbers will tend to compete with the defini-
tion of phase introduced by the measurements [15,25];
for instance, the mean-field interactions cause a quantum
spreading of the phase [26]. These effects are not included
in the present article.

2 Intrinsic and induced phase

Until now, we have limited our study to initial states of
the system that are products of Fock states, where the
initial occupation numbers are perfectly well defined. We
will now allow these numbers to fluctuate, beginning with
the simple case where their difference fluctuates but their
sum remains constant.

2.1 Constant total number of particles

We now assume that:

Qmax
> g [Na+Q ke Ny —Q: k)
Q=0

|Po) = (20)

where the difference between the population numbers
varies between N, — N and N, — Np+2Q).; we will assume
that @ < N4, Np. The calculation remains similar to that
of Section 1, the main difference being that a double sum:

Z TQTY
Q.Q

(21)

is added in the calculation of the probability. In each term
of this sum, instead of coming back to the same value of
the difference N, — N, under the effect of the sequence
of a and af operators, a change @ — Q' has to be accu-
mulated in order to obtain a non vanishing contribution.
Equation (11) is therefore now replaced by:

Z To Ty Z
Q.Q'

{¥ i=@-Q'}

Fyy (r1) Foy (r2) . Fyp (rp) (22)
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or:

do ’

§ * , E(Q-Q )P
f Te tQ 271'6

Q.Q

P
X H {F()(I‘i) + €i¢F+1(I‘Z') + €7i¢F,1(I‘i)} .

i=1

(23)

This naturally leads to the introduction of the real positive

function: )

GP)=c Z xg e 197 (24)
Q

where c is a normalization factor ensuring that the integral
of G(P) between 0 and 27 is 1. We can now write the
probability as:

~ /27r @G(@)ﬁ {1+ cos[(ky —kp) -1r; + D]} (25)
o 27 i

which is straightforward to interpret: instead of being
completely unknown between 0 and 27, the initial phase @
before the first measurements now has a distribution func-
tion G(®). This function is given by a Fourier transform
of the probability amplitudes associated with the initial
variations of the difference N, — N contained in (20).
When successive position measurements begin, they all
contribute to a further determination of the phase &, as
in the simple case already discussed in Section 1. The in-
formation on the phase is therefore a combination of the
information contained in the initial state and of that cre-
ated by the successive position measurements.

A classical example is a “coherent state” obtained
when the coefficients xg are given by:
Q
—elal?/2 A7
rg=e (26)
Vil
where « is a parameter, which can be written:
a=|al €. (27)
The initial ¢ distribution is then given by:
o 2
G(P) ~ Z @ £Q(P—0) (28)
Q \/a
which is a narrow distribution around ¢ = 6 when

|| > 1; in this case, the initial value of @ is already very
well defined, so that not much additional information can
be gained in successive interference measurements.

2.2 General state

In the most general case, both the sum and difference
of N, and N, vary in the initial state:

o) => > wn,, 3y [Na i ka; Ny i k)

N o Q

(29)

where, under the sum, N, and N, are given by:

Ne=St@ N=3 @ (30)
In the calculation of the probability, the variables N and @
play a different role, because the sequence of a and af
operators acts on ) but not on N. As a consequence, a
double sum over () and Ql still appears, as in the preceding
section, but only a single sum over N. For each value of IV,
the calculation is the same as above, and leads to the
definition of a N dependent distribution function for @:

2

GN(P) = > 240 (v2—q €97 (31)

Q

Then the sum over N can be made in a second step; one
can easily see that equation (25) remains valid provided
one introduces the following definition of G(®):

G (@)=Y Gn(®). (32)
N

We therefore find a situation where each value of N con-
tributes independently to the distribution of the phase ®.
Different situations are possible. If for instance all func-
tions Gn(P) are peaked around the same value of the
phase, we obtain a state where the initial phase is well de-
fined, as for the coherent state (26). But if, on the contrary,
they are either non-peaked functions, or functions peaked
around different values, the initial phase is uncertain; it
only becomes better and better known as more and more
position measurements are performed, as in Section 1.1.
This shows that the spontaneous appearance of relative
phase that we have discussed is not restricted to Fock
states; it is actually a general property of all states in-
volving high population numbers, provided the number of
measurements remains much smaller than these popula-
tions.

3 Spin states; quantum non-locality

We now apply our calculation to particles with two inter-
nal states, which we note a and 3. We consider that these
states are spin 1/2 states; the notion of pseudo spin allows
us to do so without loss of generality.

3.1 Calculation of the probability

The initial state of the system is assumed to be:

|Po) = | Ny : ka, ; Ny : ky, 3). (33)
We note ¥, (r), with p = «, 3, the field operators asso-
ciated with internal states «, . The r dependent local
density is then:

n(r) = Ul(r)@s(r) + 7} (r)%, (r) (34)
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and the three components of the local spin density are:

(35)

The spin component in the direction of plane zOy making
an angle # with Oz is:

O’e(r) =

This operator, in spin space, has two eigenvalues n = +1;
the corresponding projectors are:

W (1) (r) + e 0T (0)Ts(r).  (36)

1
By(r,0) = 5 [n(r) +noo(r)]. (37)
We now consider a measurement of one spin at point r;
in direction 6y, another at point ro in direction 65, etc.;
this corresponds to the sequence of operators:
(38)

06,(r1); 06,(r2); 00,(xs) ... oo, (rp).

As in Section 1, we assume assume that all r’s are differ-
ent so that all these operators commute; in addition, as
already mentioned, in all this article we assume that the
sequence of measurements is sufficiently brief to ignore
any intrinsic evolution of the condensates. Using again
the expansion of the field operators on the annihilation

operators:
Z ek g (39)
k
we obtain the probability of a sequence of results:
m = =x1; no = =£1;... np = £1 (40)

in the form of an average value in state |®P):

(Do| Py, (r1,01) X Py, (re,02) X ... X Py (rp,0p)|Po)

’ ’
~ E g elki=ky) E g elika—ka)ra o
’ ’
k1 Kk, ko Kk,

T T
X <¢O|H [ak;;ﬁakl?ﬁ + ak;;aakﬁa
i
i0; —1i6;
+n; ( e aTlﬁakl;a 4+ e aL;;aakl;ﬁ>} |@0> (41)

The rest of the calculation is now very similar to that of
Section 1.1. In each term contained in the product of the
second line of (41), we may assume that the a and a' are
ordered in the “normal” order (with all the a’s operators
to the right, all a'’s to the left). This is because, in the first
line of (41), when the projectors are replaced by their ex-
pressions in function of the field operators (and Hermitian
conjugate), one can move all ¥’s to the right, all ¥'’s to the
left (since operators at different points of space commute).
Now we see that, each time a k; or a k; appears associated
with the spin index « (or 3), it is necessarily equal to k,

(or kp) to give an non-zero contribution; the operators a
and a' introduce numbers +/ Ngp £ n as before, the only
condition being that the creation and annihilation opera-
tors should be balanced in each sequence. If we assume as
above that the number of measurements P is much smaller
than N, the second line becomes proportional to:

2m
N/ d@H{l"f'_n ez[(k —kyp)-r4+6;] z<15+cc)
0

=1
(42)
where the contrast ratio = is defined by equation (10).
The probability of the sequence of results 71, 72, ... np
obtained at points rq, ra, ... rp is then:

2 dd P
0 =1

(43)
which is the general result.
From now on in this section, we assume that N, = Ny,
so that the contrast ratio x is equal to 1. For a sequence
of +1 results, (43) reduces to:

/27‘{‘ d@

A simpler case occurs when k, = k;. The probability of a
sequence of P, results equal to +1 and P_ results equal

to —1 then becomes:
P_
— @ — P
T (252) )
1

/2” dd ¥ o2 (49z

or, if all angles 6 are equal:

/271' A 12 [ @1
~ — — in —
. o cos 2 sin o

(Wallis integral).

If we compare with the situation studied in Section 1,
we now have an additional element: the adjustable param-
eter 0; (direction of the measured spin component in the
2Oy plane). This combines with the r; dependent interfer-
ence effect to determine the probability of each sequence
of results, as shown by equation (43). When k, = k;, these
spatial interference effects disappear, and the probability
of the succession of results takes the simpler form (45),
where the effect of the n’s and 6’s is isolated. For the first
measurement, the two results 7 = £1 are equally probable
but, as soon as one of these results is obtained, the distri-
bution of @ is changed. The basic process behind the pro-
gressive determination of @ is the same as in Section 1: af-
ter a given sequence of measurements with known results,
the new distribution of probability for @ is given (within
a normalization constant) by the initial probability of this
sequence, i.e. by replacing in (43) the measured 7;’s by
the corresponding results. Each result 7; = +1 brings in

cod? [(ka —kp) - ri+0; — @} . (44)

2

i

(46)
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a factor cos?(6; — ®)/2 that tends to localize the & distri-
bution around @ = #; and makes it vanish in the opposite
direction ¢ = ;4 m; each result n; = —1 brings in a factor
sin?(0; — @) /2 that does exactly the opposite. A combina-
tion of two successive opposite results n = +1, —1 brings
in a factor ~sin®(#; — @) that cancels the @ distribution
in the two directions @ = 6; and & = 6; + 7 and tends to
localize it around @ = 6; + /2. Similarly, sequences of 7;s
with different numbers of results +1, —1 will introduce a @
maximum in some intermediate direction (see for instance
the discussion of Sect. III-C of Ref. [8]).

This illustrates how a sequence of successive measure-
ments can progressively make the @ distribution more and
more peaked around some value @ = &, and brings the
system closer to a situation where all the spins are polar-
ized in the same transverse direction 6 = @,.,; interesting
numerical simulations of the phenomenon can be found in
reference [27]. The individual discrete measurements coop-
erate to provide information on a quasi-continuous quan-
tity, the direction of the transverse orientation. Moreover,
the experimenter can adjust the choice of the measure-
ment angles 6; in function of the preceding results +1
obtained. It is not necessary to orient the measurement
apparatus in the direction of the component that is to be
measured, as would be the case for a single spin; a possible
strategy to measure the position of the maximum @,y is
to perform measurements in the perpendicular direction
and check that the proportion of n £ 1 results is 1/2 (in
this way, first order @ variations can be measured).

3.2 Quantum amplification

An interesting property of the spin measurement sequence
is that it can give information on the transverse spin orien-
tation of a very large number 2N of particles even when P,
the number of actually measured particles, is much lower.
In principle, one can get information on the spin orienta-
tion of a macroscopic sample by just measuring the spin
orientation of a microscopic sub-sample made of 100 parti-
cles for instance, which involves a huge amplification fac-
tor. Such an amplification is often evoked in the theo-
retical discussion of the measurement process in quantum
mechanics, where a microscopic system (the measured sys-
tem) triggers an instability in the measurement apparatus,
leading to macroscopically different states of the pointer
(here the large number of non-measured particles). The
phenomenon is clearly related to the effect discussed by
Siggia and Ruckenstein [28] in the context of the spon-
taneous appearance of a transverse spin orientation in a
double condensates of spin polarized atomic hydrogen.

A related discussion is given by Leggett and Sols in
reference [15] (see paragraph before last of this refer-
ence), who consider two superconducting systems that are
initially described by an incoherent mixture of number
states, and between which a Josephson current can flow.
They then ask the question “does the act of looking to
see whether a current flows itself force the system into an
eigenstate of current and hence of relative phase?”. They

assume the presence of a small compass needle measur-
ing the magnetic field produced by the Josephson current.
Both the needle and the current are macroscopic, but one
can assume that the current is arbitrarily large while the
needle is tiny. Under these conditions, it seems “bizarre in
the extreme” to assume that, by some mysterious amplifi-
cation effect, it is the small classical object that will force
the large one to take a definite value. The authors con-
clude that, while standard mechanics would answer “yes”
to their question, “common sense rebels against this con-
clusion, ... and we believe that in this case common sense
is right” — in other words they conclude that the phase ¢
existed before the measurement (additional variable). In
our case, the discussion is different since no external classi-
cal pointer (the compass needle) is introduced. In a sense,
the point is even stronger since the small object forcing
the large classical object into a definite value may even be
microscopic. But the conclusion remains the same: if one
rejects the idea of a small object creating the value of a
macroscopic variable (the phase), then one is led naturally
to accept the existence of hidden variables in quantum the-
ory. We note in passing that, as remarked by Bell [29,30],
even if it is traditional, it is somewhat clumsy to call “hid-
den” an additional variable such as @: it is precisely the
variable that is actually seen in the experiment, while the
variables of quantum mechanics (wave functions) tend to
remain invisible.

3.3 Non-local quantum effects

For the discussion of this subsection, it is convenient to
assume that the orbital states of the particles are not nec-
essarily plane waves. We therefore replace (33) by:

|@0> = |Na D Pa,; Ny Saba6> (47)

where the orbital states correspond to the wave functions:

(rlpa) = @alr), (rlen) = @p(r) (48)
with relative phase given by:
arg {@a(r)/ep(r)} = &(r). (49)

The calculation remains similar to that given above.
In (39), the field operator was expanded on the annihi-
lation operators ax corresponding to plane waves; here we
expand ¥, (r) on annihilation operators corresponding to
a base where the particle is in internal state o and in or-
bital states with wave functions ¢, (r), ¢2(r), @s3(r), ete.:

Wy (r) ~ Z pq(r) ag; 4 (50)

with  ¢1(r) = @ (r), and where pa(r), ¢3(r), etc. com-
plete ¢, (r) in order to make an orthonormal basis in or-
bital space. We do something similar for ¥s(r), now in a
basis with orbital states that contain ¢y (r) as the first vec-
tor. In practice, the only difference is that the exponentials
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ellca=ko)ri] are now replaced by the product ¢f (r)pq (r).
The result for the probability is then:

27 P
do [ 5 5
~ Py [pa(rs)|” + lop(rsi)]

+ 22n; |pa(ri)en(ri)| cos[E(ri) —0i+ @] |. (51)

Even if N, = N, (so that = 1) the contrast ratio of the
interference term, which contains the 6; dependence of the
result, is not necessarily 1; it is maximum at points r where
they have the same modulus, zero if one of them vanishes.
Clearly, in order to determine the relative phase @, trans-
verse spin measurements should be made in the regions of
good overlap between @, (r) and ¢p(r).

We can now assume that ¢, (r) and ¢ (r) are equal and
that both these functions are non-zero only in two distant
regions of space, D and D'; for simplicity we will assume
that they are constant within these two domains; equa-
tion (51) then simplifies and the orbital wave functions
disappear, as in (45). All the measurements are made in
region D, which is supposed to be relatively small so that
it contains a small average number of particles, 10 or 100
for instance. Region D' can be much larger and contain
a macroscopic number of particles. Both regions can be
very distant from each other, so that no signal transmis-
sion between them is possible during the duration of the
experiment. The curious prediction of quantum mechan-
ics is that a measurement of a microscopic transverse spin
orientation in region D will immediately induce the ap-
pearance of a parallel macroscopic spin orientation in re-
gion D'

One can make the situation even more striking by as-
suming that the wave functions ¢, (r) are non-zero in
three regions of space: a small measurement region D as
before, a large region D' at a small distance from D, and
finally another large region D" very far away (in a different

galaxy for instance). The transverse spin orientation in D
then plays the role of a local pointer, which can be seen
as a part of the measurement apparatus which measures
the direction of the transverse spin orientation in D. Re-
mote region D" contains another pointer, which under the
effect of a measurement in D immediately takes a direc-
tion parallel to that of the pointer in D'; the phenomenon
could then be called teleportation of the direction of point-
ers, a clear illustration of quantum non-locality. Of course,
we should also make the usual proviso: the direction ob-
tained in the measurement can not be controlled, but is
completely random: there is no way to use the teleporta-
tion to transmit information [31,32], a necessary condition
for preserving consistency with relativity.

3.4 The EPR argument for condensates
The perfect correlation between the direction of pointers

at arbitrary distances is of course reminiscent of the quan-
tum correlations discussed in the context of the famous

Einstein-Podolsky-Rosen (EPR) argument; the similarity
is even more striking in the EPRB version proposed by
Bohm (B), which involves the measurement of spin di-
rections. For a review, see for instance reference [22] and
references therein; a detailed historical perspective is given
in [33]. EPRB consider two correlated particles which un-
dergo spin measurements in two remote regions of space
and assume that quantum mechanics gives correct predic-
tions concerning the probabilities of the various measure-
ments of the spins along different directions. The EPR
reasoning [34] states that “.. if, without in any way dis-
turbing a system we can predict with certainty the value of
a physical quantity, then there exists an element of physi-
cal reality corresponding to this quantity” (may the most
quoted sentence of all physics!). Since EPR attribute in-
dependent elements of physical reality to the content of
remote regions of space, this is often called an assump-
tion of “local realism”. From this they show that some
elements of physical reality are not contained in quantum
mechanics, in other words that this theory is incomplete.
Bohr rejected this conclusion [35] because he considered
that the notion of element of reality used by EPR con-
tained essential ambiguities. In his view, “the procedure of
measurement has an essential influence on which the very
definition of the physical quantities in question rests”. One
should then only ascribe physical reality to the whole ex-
tended system made of the microscopic particles and the
macroscopic measurement apparatus, not to microscopic
subsystems only. As a consequence, one can not always
attribute distinct physical properties to the content of in
different regions of space, as EPR do. In other words, Bohr
sees the process of measurement on an extended micro-
scopic system as a fundamentally random process that is
not necessarily localized in space [36].

Let us now apply the EPR reasoning to the evolution
of the macroscopic pointers (transverse spin orientation)
in D" and D”, when a series of spin measurements is per-
formed in D. We focus for a moment on D" and consider
the elements of physical reality associated with this re-
gion of space. As EPR, we consider that they can not
vary suddenly under the effect of events taking place at
arbitrarily large distances in D and D'. Now compare the
elements of reality associated to region D”, just before,
and just after the series of spin measurements performed
in region D. After the measurement the region contains a
macroscopic spin orientation in a given transverse direc-
tion, which are necessarily associated with some elements
of reality. But these elements cannot appear as a result
of a random process taking place in D, with no possible
causal link since the distance is much too large. Therefore,
even before the measurement, the element(s) of reality as-
sociated with the spin orientation already existed. But,
on the other hand, standard quantum mechanics does not
include this element before the measurement, only after;
it therefore misses at least one element of reality, it is in-
complete.

One can make the reasoning more explicit by consid-
ering two realizations of the experiment, one in which
the transverse spin orientation is found at the end of the
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experiment in a direction ¢ = ¢, (with some small uncer-
tainty AP depending on the number or measurements),
another in which this spin orientation is found in a dif-
ferent direction @ = @, after exactly the same sequence
of measurements. Standard quantum mechanics describes
the two final situations by different vectors in the space of
states of the system, accounting for the existence of dif-
ferent physical quantities in region D" (different elements
of reality). On the other hand, it considers that the ini-
tial states were exactly the same; the differences appear
only under the effect of the measurements. But this is
in opposition with the EPR notion of local reality, which
implies that the differences must have already existed be-
fore the measurements. In other words, the EPR reasoning
shows that the two realizations of the experiment actually
started from different initial conditions. Since quantum
mechanics ignores this difference, it is incomplete.

What are the consequences of this transposition of the
EPR reasoning to a different situation than the two parti-
cles of the original article? First, the EPR sentence quoted
in the first paragraph of this subsection becomes even
more true. Here the pointers in D' and D" are not in-
visible microscopic objects, but macroscopic and perma-
nent angular momenta, similar to the spin magnetization
of ferromagnets; they are classical physical entities that
can be manipulated directly, so that it seems difficult to
deprive them of properties that are independent of the
measurement apparatuses. Therefore Bohr’s denial of in-
dependent physical reality becomes more difficult to ac-
cept (of course, no one knows if Bohr would have given
again it in this context!). Second, even if one follows Bohr
and takes for granted that physical properties are reserved
to systems including macroscopic measurement appara-
tuses, another difference arises here: one single experimen-
tal setup can lead to many spin orientations. With a single
spin, one can measure only the spin component along the
direction defined by the apparatus; with many spins in
region D, it is the measurement process which determines
the axis along which the spins become oriented (the trans-
verse orientation can take in general a direction which
makes any angle with the direction of measurement). In
order to show that incompatible observables can simulta-
neously be defined (as opposed to standard quantum me-
chanics), the usual EPR argument involves different (and
incompatible) experimental setups. Here, no measurement
at all is performed in D" and DN; moreover, the sequence
of measurements performed in D may be always exactly
the same in successive realizations of the experiment, even
if they lead to different directions of the transverse orien-
tation®. Clearly, Bohr’s argument ascribing different phys-

L If region D' contains a large average number or particles,
its spin orientation is classical; within a good approximation,
all its components correspond to communing operators, and
they are not incompatible quantities in standard quantum me-
chanics. On the other hand, if regions D' contains only one or
two particles on average, orthogonal components of the spin
orientation are no longer compatible observables, allowing one
to transpose the usual EPR argument on incompatible exper-
iments to this case.

ical realities to incompatible measurements does not apply
when only one kind of measurement takes place. Another
difference is that, in the usual discussion of EPR correla-
tions, the entanglement of the two spin particles plays an
essential role; here, the initial state vector is a simple prod-
uct involving the two internal spin states. One can finally
remark that, in usual EPRB situations, one has to invoke
a “‘no quantum cloning” theorem to explain why superlu-
minal signaling is impossible. Here, in all regions D, D'
and DN, we have a large number of copies of the individ-
ual systems to measure precisely the transverse direction
of polarization.

The EPR argument therefore certainly looks dif-
ferent, and probably even stronger, in the context of
Bose-Einstein spin condensates. Within standard quan-
tum mechanics, it seems really difficult not to speak of
action at a distance to describe the instantaneous ap-
pearance of the macroscopic transverse orientation of the
pointer in region D" — but, again, we must remember
that its final direction is totally uncontrolled and cannot
be used as a signal. In other words, what we we have is an
“uncontrolled action at a distance”. On the other hand, we
do not have the equivalent of a Bell theorem in this case:
the introduction of an additional variable @ to quantum
mechanics easily allows one the reproduce the prediction
of quantum mechanics in a purely local model. Amusingly,
the situation is exactly the opposite of that usually dis-
cussed in the context of EPR-Bell experiments on pairs of
spins: here non-locality appears clearly in standard quan-
tum mechanics, but disappears in theories with additional
variables.

3.5 Conservation of angular momentum

An intriguing question relates to the momentum ab-
sorbed by the measurement apparatus during the inter-
action with the measured system. For instance, in a usual
Stern-Gerlach experiment where a single spin, initially po-
larized in a transverse direction, is measured to end up in
a longitudinal direction (with respect to the measurement
apparatus), it is generally assumed that the variation of
its angular momentum is absorbed by the apparatus —
this variation is microscopic and so small that it is impos-
sible to measure in practice. Here, we have a system which
starts before measurement from a state (47) with zero av-
erage value of the angular momentum?; after a sequence
of measurements performed in D it reaches another state
where all spins point in a transverse direction given by the
spontaneous value of @, which has a high angular momen-
tum if there are many spins. From the usual conservation
rule, one could then expect a priori that the measurement
apparatus should acquire the opposite amount of angu-
lar momentum. On the other hand, we have seen that the

2 We reason within standard quantum mechanics, assuming
that it is the measurement process that puts the system into
a state with definite angular momentum; we do not assume
that the process only reveals a value that existed before, as in
theories with additional variables.
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measurement of a few spins in D may result in the appear-
ance of a macroscopic angular momentum for the whole
system in D + D'. Does the measurement apparatus re-
ally absorbs all the angular momentum acquired by the
whole system, although it interacts directly only with a
subsystem in D that is very small?

The usual rules of quantum mechanics are not very
specific about the answer to this question. The emphasis
is usually put on measurements of microscopic systems,
which have a completely negligible effect on the macro-
scopic measurement apparatus — an exception, neverthe-
less, is the discussion of the recoil effect of a moving double
slit experiment in the famous Bohr-Einstein debate. Here,
due to the amplification process discussed in Section 3.2,
the measured system itself is macroscopic. If we assume
that the answer to the question is “yes”, in order to keep
a strict conservation rule for the angular momentum, we
open the way to paradoxes: for instance, by locally dephas-
ing in region D’ the two wave functions ¢, and ¢, before
the measurement in D, one would control the direction of
the angular momentum in D’ induced by this measure-
ment, and therefore the transfer of angular momentum to
the apparatus in region D. This would allow superluminal
signaling, in contradiction with relativity. The appropri-
ate answer is therefore probably rather “no, the angular
momentum transferred is just that of the individual spins
that are measured”; in this perspective, the measurement
operation creates in region D' an angular momentum that
appears from nothing, which is somewhat paradoxical too.
Maybe this just means that the rule of angular momentum
conservation should to not be taken too strictly in a quan-
tum measurement processes. Another possibility, again, is
to take the point of view of theories with additional vari-
ables, and assume that ¢ was initially actually perfectly
determined in each realization of the experiment, even if
it is unknown; in this perspective no angular momentum
transfer has to take place, so that the difficulty vanishes.

3.6 More than two internal levels

The above considerations can easily be transposed to more
than two internal states, three for instance. The situa-
tion then becomes analogous to that of Section 1.2, where
two relative phases @ and @' enter the calculation instead
of one. One can assume that transverse spin observables
relative to the o — 3, and to the 8 — ~y, transitions are
measured. A sufficient number of measurements will de-
termine the two relative phases. An interesting property
is that the transverse orientation of the spin associated to
the av — ~ transition will then be determined, although no
direct measurement of this observable has been made.

4 Conclusion

In standard quantum mechanics, physical systems in
highly populated Fock states have a completely undeter-
mined relative phase, but this phase can become very well
defined under the effect of a few interference measure-

ments only; this is true even in the number of particles
detected is negligible with respect to the total populations.
The results mimic exactly what would happen if the initial
phase was fixed, but initially unknown, and progressively
revealed by the observation of the interference pattern.
So, the answer to the question mentioned in the intro-
duction “do condensates that have never seen each other
have a relative phase?” is: in standard quantum mechan-
ics, in principle they do not, but they can acquire it under
the effect of a few microscopic measurements, in a way
which gives the impression of a well defined initial phase.
As Anderson puts it [18]: “any future experiment can be
interpreted as if ¢ was fixed”. It is therefore tempting to
assume that the phase existed from the beginning. This is
the point of view of physicists who argue that, for superflu-
ids, the usual postulates of quantum mechanics should be
completed by an additional postulate introducing spon-
taneous symmetry breaking (of the conservation of the
number of particles); this leads to non-zero average value
of the field operator. This view is of course legitimate, but
is actually nothing but another form of the “hidden vari-
able” theory of quantum mechanics (de Broglie, Bohm), as
we have discussed in Section 1.1. It also remains legitimate
to stick to orthodox quantum mechanics and to consider
that it is the process of quantum measurement itself that
acts on the condensates and forces them to acquire a well
defined relative phase.

Spin adds to this problem the notion of angular mo-
mentum and offers interesting variants of the usual EPR
non-locality experiments. One can suppose that spin ori-
entation measurements are performed in two (or more)
very remote regions of space. An interesting possibility
is that some of the remote systems may be macroscopic;
the results in terms of transverse direction of the local
spin orientation of the sample are not discrete, as in usual
EPR experiments, but continuous. Actually the macro-
scopic spin orientation plays here the role of the usual
pointer often considered in the theory of quantum mea-
surement, but with a surprising property: the pointer can
be put at an arbitrary distance from the measured system.
In one region of space, a series of measurements deter-
mines a transverse orientation, in another remote region
a classical macroscopic pointer immediately takes the cor-
responding direction and stays there, accessible to future
measurements! It seems difficult to deny that standard
quantum mechanics involves action at a distance in this
case. This action is instantaneous, but not controllable,
so that it can not be used to send superluminal signals.
There has been a long debate [37-40] to decide whether or
not non-locality is an inherent property of quantum me-
chanics, or if it appears only if additional ingredients are
added to the theory (hidden variables, local reality, coun-
trafactuality [41], etc.). Our example can be discussed just
in terms of standard quantum mechanics, without adding
such additional elements and/or incompatible experimen-
tal setups, which would allow to invoke different physi-
cal realities in a Bohr type argument. It therefore clearly
speaks in favor of accepting non-locality as an intrinsic
property of standard quantum mechanics.
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